推广 热搜: 让人  产品  面板  显示器  牛奶  也就  哪有  站在  关系  爸爸 

幻方 、幻方数学题

   日期:2023-04-16     浏览:46    评论:0    
核心提示:什么叫幻方?数学幻方(Magic Square)是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法。下面图片给出的是3阶、4阶和5阶幻方的例子。什么叫幻方幻方(Magic Squ

什么叫幻方?数学

幻方(Magic Square)是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法。

下面图片给出的是3阶、4阶和5阶幻方的例子。

什么叫幻方

幻方(Magic Square)是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法。

幻方也是一种传统游戏。旧时在学堂多见。它是将从一到若干个数的自然数排成纵横各为若干个数的正方形,使在同一行、同一列和同一对角线上的几个数的和都相等。

幻方(OEIS中的数列A006052)的数目还没有得到解决。

反幻方的定义:在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和不相等,具有这种性质的图表,称为"反幻方"。

反幻方与正幻方***的不同点是幻和不同,正幻方所有幻和都相同,而反幻方所有幻和都不同。所谓幻和就是幻方的任意行、列及对角线几个数之和。

边框外围的数字之和就是幻和。红色为偶数,黑色为奇数。

可以说反幻方是一种特殊的幻方。反幻方的幻和可以全部不同,也可以部分相同。

关于幻方的起源,我国有"河图"和"洛书"之说。相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,

感动了上天,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是"河图",也是最早的幻方。伏羲氏凭借着"河图"而演绎出了八卦,

后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为"洛书"。"洛书"所画的图中共有黑、白圆圈45个。

把这些连在一起的小圆和数目表示出来,得到九个。这九个数就可以组成一个纵横图,人们把由九个数3行3列的幻方称为3阶幻方,除此之外,还有4阶、5阶...

后来,人们经过研究,得出计算任意阶数幻方的各行、各列、各条对角线上所有数的和的公式为:

S=n(n^2+1) /2

其中n为幻方的阶数,所求的数为S.

什么叫做幻方,定义是什么

幻方的定义:在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。我国古代称为“河图”、“洛书”,又叫“纵横图”。n阶幻方是由前n^2(n的2次方)个自然数组成的一个n阶方阵,其各行、各列及两条对角线所含的n个数的和相等。例如三阶幻方,幻和为15。

完美幻方的定义:又称纯幻方、泛对角线幻方等,把一个幻方e的前任意行移动到幻方的下方,所有新得到的方阵如果都仍然是幻方(也就是所有新方阵的两个主对角线数组都是幻和数组),那么幻方e称为完美幻方。

否则就是缺陷幻方。

什么是幻方?

相传在大禹治水的年代里,陕西的洛水常常大肆泛滥。洪水冲毁房舍,吞没田园,给两岸人民带来巨大的灾难。于是,每当洪水泛滥的季节来临之前,人们都抬着猪羊去河边祭河神。每一次,等人们摆好祭品,河中就会爬出一只大乌龟来,慢吞吞地绕着祭品转一圈。大乌龟走后,河水又照样泛滥起来。

后来,人们开始留心观察这只大乌龟。发现乌龟壳有9大块,横着数是3行,竖着数是3列,每一块乌龟壳上都有几个小点点,正好凑成从1到9的数字。可是,谁也弄不懂这些小点点究竟是什么意思。

有一年,这只大乌龟又爬上岸来,忽然,一个看热闹的小孩惊奇地叫了起来:“多有趣啊,这些小点点不论是横着加,竖着加,还是斜着加,算出的结果都是15!”人们想,河神大概是每样祭品都要15份吧,赶紧抬来15头猪和15头牛献给河神……果然,河水从此再也不泛滥了。

这个神奇的故事在我国流传极广,甚至写进许多古代数学家的著作里。乌龟壳上的这些点点,后来被称作是“洛书”。一些人把它吹得神乎其神,说它揭示了数学的奥秘,甚至胡说因为有了“洛书”,才开始出现了数学。

撇开这些迷信色彩不谈,“洛书”确实有它迷人的地方。普普通通的9个自然数,经过一番巧妙的排列,就把它们每3个数相加和是15的8个算式,全都包含在一个图案之中,真是令人不可思议。

在数学上,像这样一些具有奇妙性质的图案叫做“幻方”。“洛书”有3行3列,所以叫3阶幻方。它也是世界上最古老的一个幻方。

构造3阶幻方有一个很简单的方法。首先,把前9个自然数按规定的样子摆好。接下来,只要把方框外边的4个数分别写进它对面的空格里就行了。根据同样的方法,还可以造出一个5阶幻方来,但却造不出一个4阶幻方。实际上,构造幻方并没有一个统一的方法,主要依靠人的灵巧智慧,正因为此,幻方赢得了无数人的喜爱。

历史上,***把幻方当作数学问题来研究的人,是我国宋朝的著名数学家杨辉。他深入探索各类幻方的奥秘,总结出一些构造幻方的简单法则,还动手构造了许多极为有趣的幻方。被杨辉称为“攒九图”的幻方,就是他用前33个自然数构造而成的。

攒九图有哪些奇妙的性质呢?请动手算算:每个圆圈上的数加起来都等于多少?而每条直径上数加起来,又都等于多少?

幻方不仅吸引了许多数学家,也吸引了许许多多的数学爱好者。我国清朝有位叫张潮的学者,本来不是搞数学的,却被幻方弄得“神魂颠倒”。后来,他构造出了一批非常别致的幻方。“龟文聚六图”,就是张潮的杰作之一。图中的24个数起到了40个数的作用,使各个6边形中诸数之和都等于75。

大约在15世纪初,幻方辗转流传到了欧洲各国,它的变幻莫测,它的高深奇妙,很快就使成千上万的欧洲人如痴如狂。包括欧拉在内的许多著名数学家,也对幻方产生了浓郁的兴趣。

欧拉曾想出一个奇妙的幻方。它由前64个自然数组成,每列或每行的和都是260,而半列或半行的和又都等于130。最有趣的是,这个幻方的行列数正好与国际象棋棋盘相同,按照马走“日”字的规定,根据这个幻方里数的排列顺序,马就可以不重复地跳遍整个棋盘!所以,这个幻方又叫“马步幻方”。

近百年来,幻方的形式越来越稀奇古怪,性质也越来越光怪陆离。现在,许多人都认为,最有趣的幻方属于“双料幻方”。它的奥秘和规律,数学家至今尚未完全弄清楚呢。

8阶幻方就是一个双料幻方。

为什么叫做双料幻方?因为,它的每一行、每一列以及每条对角线上8个数的和,都等于同一个常数840;而这样8个数的积呢,又都等于另一个常数2058068231856000。

有个叫阿当斯的英国人,为了找到一种稀奇古怪的幻方,竟毫不吝啬地献出了毕生的精力。

1910年,当阿当斯还是一个小伙子时,就开始整天摆弄前19个自然数,试图把它们摆成一个六角幻方。在以后的47年里,阿当斯食不香,寝不安,一有空就把这19个数摆来摆去,然而,经历了成千上万次的失败,始终也没有找出一种合适的摆法。1957年的一天,正在病中的阿当斯闲得无聊,在一张小纸条上写写画画,没想到竟画出一个六角幻方。不料乐极生悲,阿当斯不久就把这个小纸条搞丢了。后来,他又经过5年的艰苦探索,才重新找到那个丢失了的六角幻方。

六角幻方得到了幻方专家的高度赞赏,被誉为数学宝库中的“稀世珍宝”。马丁博士是一位大名鼎鼎的美国幻方专家,毕生从事幻方研究,光4阶幻方他就熟悉880种不同的排法,可他见到六角幻方后,也感到是大开眼界。

什么叫做幻方,定义是什么?

幻方(Magic Square)是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法。

幻方又称为魔方,方阵或厅平方,最早起源于中国,是一种中国传统游戏。旧时在官府、学堂多见。它是将从一到若干个数的自然数排成纵横各为若干个数的正方形,使在同一行、同一列和同一对角线上的几个数的和都相等。宋代数学家杨辉称之为纵横图

幻方的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于幻方数学题、幻方的信息别忘了在本站进行查找喔。

原文链接:http://www.dtcchina.com/news/show-12021.html,转载和复制请保留此链接。
以上就是关于幻方 、幻方数学题全部的内容,关注我们,带您了解更多相关内容。
 
标签: 幻方 个数 自然数
打赏
 
更多>同类资讯
0相关评论

推荐资讯
网站首页  |  VIP套餐介绍  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  手机版  |  SITEMAPS  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报